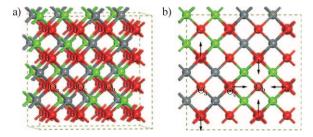
Heterogeneous Catalysis

DOI: 10.1002/anie.200903907

Maximizing the Localized Relaxation: The Origin of the Outstanding Oxygen Storage Capacity of κ -Ce₂Zr₂O₈**

Hai-Feng Wang, Yang-Long Guo, Guan-Zhong Lu,* and P. Hu*


Understanding how a metal oxide structure affects its redox properties in terms of oxygen vacancy formation is of importance for rational design of new materials.^[1-4] To this end, the investigation of ceria (CeO₂)-based materials is desirable because they are used in a variety of applications in which oxygen vacancies in the solids are vital.^[5-11] For example, ceria-based materials can act as an oxygen buffer in automobile three-way catalysts owing to their high oxygen storage capacity (OSC). [5] Recently, a CeO₂–ZrO₂ composite oxide phase, assigned as κ-Ce₂Zr₂O₈, has been reported to have excellent oxygen storage/release properties, with a cerium efficiency^[12] as high as 89%.^[13-15] However, there remain some unexplained puzzles in the system, and more importantly the origin of such a high OSC is still unknown. Herein, we report an investigation on the OSC of κ-Ce₂Zr₂O₈ using first-principles calculations that aim to explain the structure effect on its redox properties.

Among all the ceria-based materials, $Ce_{1-x}Zr_xO_2$ solid solutions have been most widely used owing to their high OSC performance.[8-11] The unusual features of κ-Ce₂Zr₂O₈ can be summarized as follows: Firstly, the OSC mentioned above (89%) is astonishingly high considering that the cerium efficiency of pure ceria is only about 2%, and other Ce_{1-x}Zr_xO₂ systems generally have cerium efficiencies of less than 50%. [16] Secondly, a similar phase to κ-Ce₂Zr₂O₈, assigned as t-Ce₂Zr₂O₈, has the same stoichiometry to that of $\kappa\text{-Ce}_2Zr_2O_8$ but a much lower OSC (52%). $^{[17,18]}$ Thirdly, the oxygen vacancies in κ-Ce₂Zr₂O₈ were found to be in unusual positions. κ-Ce₂Zr₂O₈ possesses an ordered cubic structure (Figure 1 a). [13–15] with a 96-atom unit cell consisting of 16 Ce⁴⁺. 16 Zr⁴⁺, and 64 O²⁻ ions. Both Zr⁴⁺ and Ce⁴⁺ ions are eightcoordinate, and the 64 oxygen ions can be subclassified as 8 O_a and 8O_b (coordinated with four Ce⁴⁺ and four Zr⁴⁺, respec-

[*] H.-F. Wang, Prof. Y.-L. Guo, Prof. G.-Z. Lu
Research Institute of Industrial Catalysis
East China University of Science & Technology
Shanghai, 200237 (China)
E-mail: gzlu@ecust.edu.cn
Prof. P. Hu
School of Chemistry and Chemical Engineering
The Queen's University of Belfast
Belfast, BT9 5AG (UK)
Fax: (+44) 28-9097-4687
E-mail: p.hu@qub.ac.uk

[**] This work is financially supported by National Basic Research Program (2004CB719500), International Science and Technology Cooperation Program (2006DFA42740), and the 111 Project (B08021)

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.200903907.

Figure 1. a) Unit cell of fluorite κ-Ce₂Zr₂O₈, which contains $64\,O^{2-}$ (red), $16\,Ce^{4+}$ (gray), and $16\,Zr^{4+}$ (green). b) Optimized κ-Ce₂Zr₂O₈ structure viewed along [001]. The oxygen ions are classified into three groups: O_a, coordinated by four Ce⁴⁺; O_b, coordinated by four Zr⁴⁺; and O_c, coordinated by two Ce⁴⁺ and two Zr⁴⁺. The arrows indicate the directions of forces due to the electrostatic interaction difference between Zr–O and Ce–O if O_b is removed.

tively), and $48\,O_c$ atoms that bond directly to $2\,Ce^{4+}$ and $2\,Zr^{4+}$ ions. X-ray adsorption fine structure (XAFS) and X-ray diffraction (XRD) analyses showed that under the reducing conditions, the oxygen vacancy forms at O_b (Figure 1 b). [13,19] This result appears to contradict chemical intuition: As Zr^{4+} is considered to be irreducible, there is no proper atomic orbital in Zr^{4+} to accommodate the two excess electrons left after removing O_b , thus hindering the rupture of Zr^{4+} — O^{2-} bonds; furthermore, the binding strength of Zr^{4+} — O^{2-} is usually stronger than Ce^{4+} — O^{2-} . Why then does the oxygen vacancy form at the site O_b ?

Herein, we investigate the oxygen vacancy formation in $\kappa\text{-}Ce_2Zr_2O_8$ using density functional calculations to uncover the origin of the high OSC of $\kappa\text{-}Ce_2Zr_2O_8$. The calculations were performed with the GGA-PW91 functional using the VASP code. [20] To properly describe the behavior of the cerium 4f electrons, the on-site Coulomb correction was included; that is, DFT+U. [21,22] (Calculation details are given in the Supporting Information).

We calculated oxygen vacancy formation at O_a , O_b , and O_c . In the optimized $\kappa\text{-Ce}_2Zr_2O_8$ structure (Figure 1b), all the ions remain almost at the ideal positions with the exception of O_c , which moves slightly towards the two Zr^{4+} ions. When O_b is removed, the corresponding oxygen vacancy formation energy was calculated to be as low as 0.02~eV~(0.01~eV~from~PBE+U). Interestingly, when the O_c is removed, a simple optimization based on the conjugate-gradient algorithm results in the nearest O_b atom automatically diffusing into the vacant O_c site, and consequently the oxygen vacancy actually forms at the O_b site. Similarly, when O_a is removed, the nearest O_c atom diffuses into the O_a site, and O_b moves to

Communications

the O_c site. Thus, it is clear that in the reduction of κ -Ce₂Zr₂O₈, the oxygen vacancy is favored to form at the O_b site, which is consistent with the experimental results.^[13,19]

We have previously shown that the oxygen vacancy formation energy consists of two contributions, the bond energy $(E_{\rm bond})$ and the structural relaxation energy $(E_{\rm relax})$, where $E_{\rm bond}$ is the energy needed to remove the oxygen atom into the gas phase with respect to the energy of half an O_2 with the geometric structure fixed, and $E_{\rm relax}$ is the energy gain from the fixed geometry in the presence of an oxygen vacancy to the relaxed structure. Herein, we analyzed both contributions in κ -Ce₂Zr₂O₈ to understand why oxygen vacancy is favored to form at the O_b site.

To estimate the bond energy, $E_{\rm bond}$ values for $O_{\rm a}$, $O_{\rm b}$, and $O_{\rm c}$ with the surrounding ions were calculated (Table 1). It is clear that the weakest bond strength with the surrounding

Table 1: Madelung potentials V^{form} and V^{PW91} and calculated E_{bond} values at the O_a , O_b , and O_c sites.

	O _a	O _b	O _c
V ^{PW91} [V] [a]	14.10	13.16	13.71
$V^{\text{form}} [V]^{[b]}$	23.88	19.98	21.96
E _{bond} [eV]	5.30	4.91	5.27

[a] Calculated from the formal charges of ions (+4 for Zr and Ce and -2 for O). [b] Obtained from the Bader charges (O: -1.24; Zr: +2.59; Ce: +2.38).

ions is that of O_b. This result is unexpected, considering that the Zr⁴⁺–O²⁻ bond in ZrO₂ is generally stronger than Ce⁴⁺– O²⁻ in CeO₂. Therefore, we investigated the local structure of O_b. First, the Zr⁴⁺ ion is held in the ideal crystal position of the fluorite structure, and consequently the bond distance between O_b and the nearest Zr⁴⁺ ion is 2.305 Å, which is longer than the value (2.195 Å) of the cubic ZrO₂, resulting in the noticeable decrease of the bond strength of Zr⁴⁺–O²⁻. Second, it can be seen that in the optimized κ-Ce₂Zr₂O₈ structure (Figure 1b), Oc moves towards the two nearest Zr⁴⁺ and O_b atoms owing to the stronger electrostatic attraction between Zr4+-O2- relative to Ce4+-O2- at the same bond distance. As a result, the distance between O_b and O_c is shortened, and the electrostatic repulsion between them is increased, leading to a weakening of the bond strength of O_b with its surrounding ions. To obtain quantitative bond strengths related to the electrostatic interactions, the Madelung potentials at the O_a, O_b, and O_c sites were calculated from the Ewald summation using formal charges ($V^{\text{form}} = +4$ for Zr and Ce, and -2 for O), as well as Bader charges from self-consistent PW91 + U calculation (Table 1). It can be seen that the Madelung potentials are in the same order as the bond energy terms at the O_a, O_b, and O_c sites; at the O_b site, the Madelung potential is the smallest, confirming that the bond strength of O_b is the weakest.

Once an oxygen atom is removed from the oxide matrix, the surrounding O^{2-} ions near the vacancy will relax towards the vacancy to compensate the missing bonds and gain in relaxation energy. Upon removing O_b , a large relaxation energy of 4.89 eV is gained to facilitate the O_b vacancy

formation. Interestingly, the relaxation energy mainly depends on the local movements of all the six nearest-neighbor O_c ions, which move significantly towards the vacant O_b site and compensate the four missing Zr–O bonds (Figure 2a).

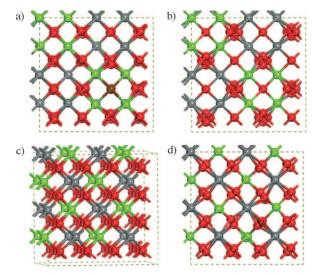
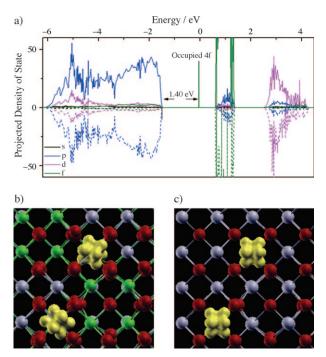



Figure 2. a) View along [001] of the optimized κ-Ce₂Zr₂O₈ structure in the presence of an oxygen vacancy (brown sphere). Around the oxygen atom vacancy, the six nearest-neighbor O_c atoms move towards the vacancy to give the relaxation energy. It should be noted that two of the six O_c atoms are either above or below the vacancy and not shown for clarity. b) The optimized structure of $Ce_2Zr_2O_7$ generated by removing all the eight O_b from κ -Ce₂Zr₂O₈. c) The optimized 96-atom bulk structure of t-Ce₂Zr₂O₈. d) The optimized structure of t-Ce₂Zr₂O₈ in the presence of an oxygen vacancy.

The remarkable displacements of O_c towards O_b are due to two factors: O_c is bonded directly with 2Zr⁴⁺ and 2Ce⁴⁺ ions, and thus there is a force pushing O_c towards the 2Zr⁴⁺ ions owing to the stronger electrostatic force of Zr4+-O2compared to Ce⁴⁺–O²⁻ in the presence of the O_b vacancy; and the smaller radius of Zr4+ relative to Ce4+ provides more space to accommodate the approaching Oc atom. However, if O_a is removed, the six nearest-neighbor O_c ions, in contrast to the case of O_b, cannot efficiently move towards the vacant O_a site because of the forces exerted on O_c in the opposite direction against their movements (Figure 1b). Similarly, for the removal of O_c, the four nearest-neighbor O_c, one O_a, and one O_b cannot move very much to provide sufficient structural relaxation, because there are no effective forces exerted on each of these six O²⁻ ions in the direction towards Oc due to their nearly symmetric bonding environments with respect to the O_c site (Figure 1b). To compare the local relaxation energy of forming an oxygen vacancy at the O_b site with those at the sites of Oa and Oc, we calculated the local relaxation energies by fixing all the ions except the six nearest-neighbor O2- ions and the four nearest-neighbor cations around the vacancy site, giving values of 0.40 eV, 4.11 eV, and 2.50 eV for O_a, O_b, and O_c, respectively. Three striking features can be seen from this result. First, it shows that the relaxation is indeed largely local in the presence of the O_b vacancy; the local relaxation energy (4.11 eV) accounts for about 85% of the total relaxation energy (4.98 eV). Second, the local relaxation is much larger at O_b (4.11 eV) than those at O_a and O_c (0.40 eV and 2.50 eV, respectively). Third, considering the small differences (ca. 0.4 eV) between the bond energy term of O_b and those of O_a / O_c (Table 1), the local relaxation differences (more than 1.61 eV) are much larger. This result suggests that the structural relaxation should be a dominating term in determining why oxygen vacancy is favored at the O_b site.

To further understand the outstanding OSC of κ -Ce₂Zr₂O₈, it is worth discussing the electronic structure in the system, namely the fate of the two excess electrons when O_b is removed. By examination of the projected density of state (PDOS) (Figure 3 a) of κ -Ce₂Zr₂O₈ in the presence of an

Figure 3. a) The projected density of states of defective $\kappa\text{-Ce}_2Zr_2O_8$. b,c) Isosurface plots of partial charge density of the gap states of $\kappa\text{-Ce}_2Zr_2O_8$ (b) and bulk CeO₂ (c) in the presence of an oxygen atom vacancy. Ce blue, Zr green, O red. In both cases, the two excess electrons in the presence of the oxygen vacancy are localized in the 4f orbital (yellow) of the two second-nearest-neighbor Ce⁴⁺ ions, thus forming two Ce³⁺ ions.

oxygen vacancy at the O_b site, we found that a very sharp 4f gap state for cerium appears at 1.40 eV above the top of the valence band; integrating this occupied 4f peak gives 1.98 e. This result shows that Zr^{4+} is indeed not reduced. Moreover, in conjunction with the isosurface plot of partial charge density of the gap states (Figure 3b), it can be seen that the two excess electrons localize separately in the 4f orbitals of the two second-nearest-neighbor Ce^{4+} cations. The separation of the excess 4f electrons in the second-nearest-neighbor cerium ions may be a general phenomenon in stabilizing defective CeO_2 -based materials, considering that the two excess electrons in the pure bulk CeO_2 , with an oxygen

vacancy in a 96-atom supercell, was also found to localize separately at the two second-nearest-neighbor Ce^{4+} ions (Figure 3c), together with our previous work^[24] and that of Ganduglia-Pirovano et al.^[25] in which the localizations of the two excess 4f electrons on the second-nearest-neighbor cerium ions on defective $CeO_2(111)$ were found to be the most stable.

It should be pointed out that for the 96-atom supercell of κ-Ce₂Zr₂O₈, at most eight oxygen atoms can theoretically be complete reduction removed if is achieved $(16 \text{ CeO}_2 \cdot 16 \text{ ZrO}_2 \rightarrow 8 \text{ Ce}_2 \text{O}_3 \cdot 16 \text{ ZrO}_2 + 4 \text{ O}_2)$. To reveal further the origin of the high OSC of κ-Ce₂Zr₂O₈, we calculated the oxygen vacancy formation by removing the eight O_b atoms in the 96-atom supercell; the average oxygen vacancy formation energy was found to be very low (0.72 eV). To directly compare with κ-Ce₂Ze₂O₈, we also calculated a 96-atom supercell of t-Ce₂Ze₂O₈ containing 16 primitive cells. It was found that a low energy (0.25 eV) is needed to remove an oxygen atom from t-Ce₂Ze₂O₂. However, there is a significant difference between κ -Ce₂Zr₂O₈ and t-Ce₂Zr₂O₈: The average formation energy of removing eight oxygen atoms in the 96atom supercell of t-Ce₂Ze₂O₈ was calculated to be 2.09 eV, which is much higher than the corresponding value (0.72 eV) in κ-Ce₂Ze₂O₈. This is consistent with the experimental results^[13] that κ-Ce₂Ze₂O₈ phase possesses 89% cerium efficiency, whereas t-Ce₂Ze₂O₈ has an efficiency of 52 %.

The major difference between t-Ce₂Zr₂O₈ and κ-Ce₂Zr₂O₈ therefore lies in the removal of eight oxygen atoms in the 96atom supercells. Why does this difference exist although they have the same stoichiometry and similar structures? This question can be understood from the structural relaxation pattern in these two systems. As discussed above, the strong relaxation energy gained from the displacements of the surrounding oxygen ions is responsible for the low oxygen vacancy formation at the O_b site in κ-Ce₂Ze₂O₈, and the structural relaxation is largely localized in the six nearestneighbor O_c ions around the O_b vacancy. In contrast, as a single oxygen atom is removed in t-Ce₂Ze₂O₈, the structural relaxation involves the displacements of almost all the O²ions in the t-Ce₂Ze₂O₈ supercell. The relaxation pattern (Figure 2d) shows a delocalization that is different from the localized relaxation nature in κ-Ce₂Ze₂O₈ (Figure 2a). It is thus clear that although the energy costs for creating single oxygen vacancy in both phases are not very dissimilar, the origins of the energies are quite different: In κ-Ce₂Ze₂O₈, each of the first-neighbor O_c ions near the vacancy moves considerably, and this local structural relaxation contributes mainly to the energy, whilst in t-Ce₂Ze₂O₈, it is the result of the relaxation of all the O^{2-} ions.

When eight oxygen atoms are removed in both systems, this effect of localized versus delocalized relaxation is magnified: In the 96-atom unit cell of κ -Ce₂Ze₂O₈, each of the eight O_b ions has its own six nearest-neighbor O_c ions; namely, every O_c belongs exclusively to a specific O_b and is not shared by any other O_b atoms. Consequently, when the eight O_b atoms are removed, their nearest-neighbor O_c ions are relaxed almost independently (see the corresponding relaxation pattern in Figure 2b). Upon removing eight oxygen atoms from t-Ce₂Ze₂O₈, the strong share of the

8201

Communications

structural relaxations owing to the delocalization leads to a much higher average oxygen vacancy formation energy.

We are now in a position to address the relationship between the structure and the OSC of CeO₂-ZrO₂ composite oxides and discuss some implications of our results for rational design of new OSC materials. The structure of κ-Ce₂Ze₂O₈ has the following features, which are essential for its high OSC: First, the structural relaxation accompanying the removal of O_b is largely localized. Second, each local structure around Ob vacancy is such that all the six nearestneighbor O_c move considerably, which can be considered as a local relaxation unit, and the large local relaxation is reached. Third, the number of nearly independent local relaxation units is maximized in the solid. To achieve such a structure, two conditions are required: a) the ratio of Zr/Ce in $Ce_{1-x}Zr_xO_2$ solid solutions should be close to unity; that is, the doped zirconium concentration reaches 50%; and b) the arrangement of Ce4+ and Zr4+ cations should be ordered and homogenous, which ensures the largest probability of existence of O_b and its exclusive O_c atoms. Thus, if a doped metal M can homogeneously mix with CeO₂ to form a stable κphase fluorite structure, κ -Ce_{1-x} M_xO_2 , and can provide large relaxation similar to Zr4+, we can expect that M may be a good dopant candidate for the new OSC material.

In summary, this work is the first attempt to pin down the key properties underlying the outstanding OSC of $\kappa\text{-}Ce_2Zr_2O_8$ at the atomic level using first-principles calculations. In $\kappa\text{-}Ce_2Zr_2O_8$, the structural relaxation plays a key role in determining the oxygen vacancy formation energy, which is largely localized, forming an independent local relaxation unit consisting of the six nearest-neighbor O_c ions with an O_b vacancy. Maximization of both the local relaxation and the number of local relaxation units plays a crucial role for the high OSC of $\kappa\text{-}Ce_2Zr_2O_8$.

Received: July 16, 2009

Published online: September 28, 2009

Keywords: cerium oxide · density functional calculations · oxygen storage · site vacancies · solid-state structures

- [3] E. Perry Murray, T. Tsai, S. A. Barnett, Nature 1999, 400, 649.
- [4] D. A. Andersson, S. I. Simak, N. V. Skorodumova, I. A. Abrikosov, B. Johansson, *Proc. Natl. Acad. Sci. USA* 2006, 103, 3518.
- [5] A. Trovarelli, Catalysis by Ceria and Related Materials, Imperial College Press, UK, 2002.
- [6] S. Park, J. M. Vohs, R. J. Gorte, *Nature* **2000**, 404, 265; G. A. Deluga, J. R. Salge, L. D. Schmidt, X. E. Verykios, *Science* **2004**, 303, 993; F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, R. Rosei, *Science* **2005**, 309, 752.
- [7] a) Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, *Science* 2003, 301, 935; b) Z. P. Liu, S. J. Jenkins, D. A. King, *Phys. Rev. Lett.* 2005, 94, 196102.
- [8] J. Kaspar, P. Fornasiero, M. Graziani, Catal. Today 1999, 50, 285.
- [9] M. Boaro, A. Trovarelli, J. H. Hwang, T. O. Mason, *Solid State Ionics* 2002, 147, 85.
- [10] P. Fornasiero, R. Dimonte, G. R. Rao, J. Kaspar, S. Meriani, A. Trovarelli, M. Graziani, J. Catal. 1995, 151, 168.
- [11] J. A. Rodriguez, J. C. Hanson, J. Y. Kim, G. Liu, A. Iglesias-Juez, M. Fernandez-Garcia, J. Phys. Chem. B 2003, 107, 3535.
- [12] Cerium efficiency is defined as the ratio of cerium(III) ion content in the cerium-containing material under typical reduction conditions relative to the total cerium content; that is, [Ce³⁺]/([Ce³⁺]+[Ce⁴⁺]).
- [13] T. Yamamoto, A. Suzuki, Y. Nagai et al., Angew. Chem. 2007, 119, 9413; Angew. Chem. Int. Ed. 2007, 46, 9253.
- [14] A. Suda, Y. Ukyo, H. Sobukawa, M. Sugiura, J. Ceram. Soc. Jpn. 2002, 110, 126.
- [15] H. Kishimoto, T. Omata, S. Otsuka-Yao-Matsuo, K. Ueda, H. Hosono, H. Kawazoe, J. Alloys Compd. 2000, 312, 94.
- [16] M. Sugiura, Catal. Surv. Asia 2003, 7, 77.
- [17] Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda, M. Sugiura, Catal. Today 2002, 74, 225.
- [18] S. Lemaux, A. Bensaddik, A. M. J. Van der Eerden, J. H. Bitter, D. C. Koningsberger, J. Phys. Chem. B 2001, 105, 4810.
- [19] T. Sasaki, Y. Ukyo, K. Kuroda, S. Arai, S. Muto, H. Saka, J. Ceram. Soc. Jpn. 2004, 112, 440.
- [20] a) G. Kresse, J. Furthmuller, Comp. Mater. Sci. 1996, 6, 15; b) G. Kresse, J. Hafner, Phys. Rev. B 1994, 49, 14251.
- [21] S. Fabris, G. Vicario, G. Balducci, S. De Gironcoli, S. Baroni, J. Phys. Chem. B 2005, 109, 22860.
- [22] a) M. Nolan, S. C. Parker, G. W. Watson, Surf. Sci. 2005, 595, 223;
 b) M. Nolan, S. Grigoleit, D. C. Sayle, S. C. Parker, G. W. Watson, Surf. Sci. 2005, 576, 217.
- [23] H.-F. Wang, X.-Q. Gong, Y.-L. Guo, Y. Guo, G. Z. Lu, P. Hu, J. Phys. Chem. C 2009, 113, 10229.
- [24] H.-Y. Li, H.-F. Wang, X.-Q. Gong, Y.-L. Guo, Y. Guo, G. Z. Lu, P. Hu, Phys. Rev. B 2009, 79, 193401.
- [25] M. V. Ganduglia-Pirovano, J. L. F. Da Silva, J. Sauer, *Phys. Rev. Lett.* 2009, 102, 026101.

^[1] M. V. Ganduglia-Pirovano, A. Hofmann, J. Sauer, Surf. Sci. Rep. 2007, 62, 219.

^[2] a) C. Di Valentin, G. Pacchioni, A. Selloni, *Phys. Rev. Lett.* **2006**, 97, 166803; b) J. Carrasco, N. Lopez, F. Illas, *Phys. Rev. Lett.* **2004**, 93, 225502.